Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 1(1): 34, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37938261

RESUMO

Parasites in the genus Amoebophrya sp. infest dinoflagellate hosts in marine ecosystems and can be determining factors in the demise of blooms, including toxic red tides. These parasitic protists, however, rarely cause the total collapse of Dinophyceae blooms. Experimental addition of parasite-resistant Dinophyceae (Alexandrium minutum or Scrippsiella donghaienis) or exudates into a well-established host-parasite coculture (Scrippsiella acuminata-Amoebophrya sp.) mitigated parasite success and increased the survival of the sensitive host. This effect was mediated by waterborne molecules without the need for a physical contact. The strength of the parasite defenses varied between dinoflagellate species, and strains of A. minutum and was enhanced with increasing resistant host cell concentrations. The addition of resistant strains or exudates never prevented the parasite transmission entirely. Survival time of Amoebophrya sp. free-living stages (dinospores) decreased in presence of A. minutum but not of S. donghaienis. Parasite progeny drastically decreased with both species. Integrity of the dinospore membrane was altered by A. minutum, providing a first indication on the mode of action of anti-parasitic molecules. These results demonstrate that extracellular defenses can be an effective strategy against parasites that protects not only the resistant cells producing them, but also the surrounding community.

2.
Environ Pollut ; 250: 873-882, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085473

RESUMO

The potential presence of nanoplastics (NP) in aquatic environments represents a growing concern regarding their possible effects on aquatic organisms. The objective of this study was to assess the impact of polystyrene (PS) amino-modified particles (50  nm PSNH2) on the cellular and metabolic responses of the diatom Chaetoceros neogracile cultures at two essential phases of the growth cycle, i.e. exponential (division) and stationary (storage) phases. Both cultures were exposed for 4 days to low (0.05 µg mL-1) and high (5 µg mL-1) concentrations of PS-NH2. Exposure to NP impaired more drastically the major cellular and physiological parameters during exponential phase than during the stationary phase. Only an increase in ROS production was observed at both culture phases following NP exposures. In exponential phase cultures, large decreases in chlorophyll content, esterase activity, cellular growth and photosynthetic efficiency were recorded upon NP exposure, which could have consequences on the diatoms life cycle and higher food-web levels. The observed differential responses to NP exposure according to culture phase could reflect i) the higher concentration of Transparent Exopolymer Particles (TEP) at stationary phase leading to NP aggregation and thus, probably minimizing NP effects, and/or ii) the fact that dividing cells during exponential phase may be intrinsically more sensitive to stress. This work evidenced the importance of algae physiological state for assessing the NP impacts with interactions between NP and TEP being one key factor affecting the fate of NP in algal media and their impact to algal' cells.


Assuntos
Diatomáceas/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Relação Dose-Resposta a Droga , Cadeia Alimentar , Modelos Teóricos , Tamanho da Partícula
3.
Mar Drugs ; 16(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702602

RESUMO

Herein, we describe the isolation and spectroscopic identification of eight new tetrabrominated tyrosine alkaloids 2⁻9 from the Polynesian sponge Suberea ianthelliformis, along with known major compound psammaplysene D (1), N,N-dimethyldibromotyramine, 5-hydroxy xanthenuric acid, and xanthenuric acid. Cytotoxicity and acetylcholinesterase inhibition activities were evaluated for some of the isolated metabolites. They exhibited moderate antiproliferative activity against KB cancer cell lines, but psammaplysene D (1) displayed substantial cytotoxicity as well as acetylcholinesterase inhibition with IC50 values of 0.7 μM and 1.3 μM, respectively.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Poríferos/metabolismo , Tirosina/análogos & derivados , Animais , Estrutura Molecular , Poríferos/química , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...